Multigrid methods for parameter dependent problems
نویسندگان
چکیده
—Multigrid methods for parameter dependent problems are discussed* The contraction numbers ofthe algoriîhms are proved within a unifying framework to be bounded awayfrom one, independent ofthe parameter and the mesth levels. Examples include the pure displacement and pure traction boundary value problems in planar linear elasticity, the Tïmoshenko béant problem, and the Reissner-Mindlin plate problem. Résumé. — On discute des méthodes multigrilles pour les problèmes dépendant de paramètres. On prouve que la diminution du nombre d'itérations des algorithmes est bornée indépendamment du paramètre et du niveau de maillages, et ce dans un cadre général On donne des exemples d'élasticité linéaire plane avec des conditions au bord de déplacement ou de traction, du problème de poutres de Timoshenko et du problème de plaques de Reissner-Mindlin.
منابع مشابه
Multigrid Methods for PDE Optimization
Research on multigrid methods for optimization problems is reviewed. Optimization problems include shape design, parameter optimization, and optimal control problems governed by partial differential equations of elliptic, parabolic, and hyperbolic type.
متن کاملMultigrid methods for a parameter dependent problem in primal variables
In this paper we consider multigrid methods for the parameter dependent problem of nearly incompressible materials. We construct and analyze multilevel-projection algorithms, which can be applied to the mixed as well as to the equivalent, non-conforming nite element scheme in primal variables. For proper norms, we prove that the smoothing property and the approximation property hold with consta...
متن کاملTruncated Nonsmooth Newton Multigrid Methods for Simplex-Constrained Minimization Problems
We present a multigrid method for the minimization of strongly convex functionals defined on a finite product of simplices. Such problems result, for example, from the discretization of multi-component phase-field problems. Our algorithm is globally convergent, requires no regularization parameters, and achieves multigrid convergence rates. We present numerical results for the vector-valued All...
متن کاملTowards a Three-Dimensional Parallel, Adaptive, Multilevel Solver for the Solution of Nonlinear, Time-Dependent, Phase-Change Problems
This paper describes on-going research into the development of new computational algorithms and software which combine parallelism, space and time adaptivity, implicit stiff solvers, and multigrid methods. Such software is necessary in order to be able to attempt three-dimensional simulations of fundamental solidification phenomena at physically relevant parameter values. The research builds up...
متن کاملA multigrid approach to two-dimensional phase unwrapping
The two-dimensional phase unwrapping problem is studied. Using the minimum Lp-norm approach, we apply three different nonlinear multigrid algorithms for reconstructing surfaces from their “wrapped” values—two classical approaches and a novel Multilevel Nonlinear Method (MNM). The methods prove to be efficient even for difficult problems with noisy and discontinuous original images. The new meth...
متن کامل